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Representations of quivers

A quiver & is a finite directed multigraph with vertices &0 and
arrows &1. A representation + of & is a choice of vector space

+8 per vertex 8 and a choice of linear application "U for each

arrow U [1].

The dimension vector of a representation + is

d := dim(+ ) := (dim(+8))8∈&0.
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•

Figure 1. A quiver with three vertices.

A representation is, equivalently, a point in the representation

space

R(&, d) :=
U∈&1

Mat3CU,BU (C) (1)

Two representations are isomorphic if they are equivalent up

to a change of basis - that is, if they lie in the same orbit of the

action of GLd on R(&,3).
If one fixes a stability parameter \ ∈ Z&0 that satisfies the iden-

tity \ · d = 0, we say that a representation + is \-stable, respec-

tively \-semistable, if every subrepresentation, ⊂ + satisfies

\ · dim(, ) < 0, respectively \ · dim(, ) ≤ 0.

Moduli spaces of stable representations

The sets of \-stable and semistable representations are GIT-

stable opens in R(&, d). We can thus consider their GIT quo-

tients.

The relations between the affine, semistable and stable quo-

tients are summarised in the following diagram:

R\−st(&, d) R\−sst(&, d) R(&, d)

R\−st(&, d)//GLd R\−sst(&, d)//GLd R(&, d)/GLd

M\−st(&, d) M\−sst(&, d) M−ssimp(&, d).
(2)

It is known that horizontal inclusions are open and surjections

are projective. Moreover, the moduli of stable representations

is smooth, and O(M−ssimp(&,3)) is generated by traces of prod-
ucts over oriented cycles in & [7]. If & is acyclic, M−ssimp(&,3)
is thus a point and M\−sst(&,3) is a projective variety.
The complement of R\−sst(&, d) is the unstable locus. It ad-
mits a stratification into locally closed subsets, called Harder–

Narasimhan strata.

Geometric invariants

Many geometric invariants of quivermoduli can be computed

effectively using the software package QuiverTools [2, 3].
However, complexity is often a limiting factor, so for large

scale applications we attempt to model several of these

features using machine learning techniques.

Euler characteristic is obtained via Betti numbers

computations [8]. These are strong topological

invariants of complex varieties, and appear in many

different mathematical settings.

Teleman inequality ratios are numbers between 0 and 1
defined on each Harder–Narasimhan stratum of

R(&, d). If all of them are strictly smaller than 1, Teleman
quantization can be applied to show higher cohomology

vanishings on M\−sst(&, d). This is done in detail in [1].

Datasets

The training data is obtained by classical algorithms derived

from the literature of quiver representations. These are im-

plemented in QuiverTools, see [2] and the accompanying [3].

We harvested data using QuiverTools.jl, the Julia version of
QuiverTools, and Distributed.jl to parallelize the computa-

tions across 128 cores, for a total CPU time of 1000h. For

this work, we use a set of 50000 combinations of 4-vertex

quivers and dimension vectors 0 ≤ d ≤ (5, 5, 5, 5), using the func-
tions betti_numbers() and teleman_weights() from Quiv-
erTools.jl to compute the ground truth values. For the Euler

characteristic prediction, we ran experiments exclusively with

dimension vector (1, 1, 1, 1). These are mathematically relevant
because the resulting quiver moduli are toric varieties.

Methodology

We train feedforward neural networks to predict various nu-

merical values associated to a quiver and a dimension vector.

For all of our prediction problems we use multi-layer percep-

tron architectures, with one-dimensional layers. The input of

our network is always the adjacency matrix of the quiver, flat-

tened, joined to the dimension vector. The dataset of 50000

entries is always randomly split into training (80%) and testing

data (20%), and batches are shuffled.

We use Flux.jl [5, 6], a pure Julia ML stack.

model = Chain(Dense(20 => 4096, relu),
Dense(4096 => 4096, relu),
Dense(4096 => 512, relu),
Dense(512 => 1, sigmoid));

train_loader = DataLoader(
(train_data, train_target), batchsize=1024);

for epoch in 0:1000
for (x, y) in train_loader

grad = gradient(m -> loss(m, x, y), model)
Flux.update!(optimizer, model, grad[1])

end
end

Figure 2. Model, data loader and training loop predicting Teleman ratios.

Current results are based on the following choices of hyper-

parameters. We use a decay scheme that halves the learning

rate when the training loss plateaus for at least 30 epochs. Our

models were let train for 1000 epochs.

Hyperparameter Euler characteristic Teleman ratio

Hidden layers 3 3

Layer sizes 4096, 4096, 1024 4096, 4096, 512

Activations relu relu, sigmoid
Batch size 1024 1024

Learning rate 10−4 5 · 10−5

Optimiser Adam Adam

Loss function least squares least squares

Table 1. Hyperparameters used in current setup.

Results

In all of our problems we were able to achieve high precision in

predicting numerical invariants. Our model predicting Teleman

ratios achieves an average loss of < 0.005 on training data and

< 0.03 on test data.

Figure 3. Loss of Teleman ratio predictor over training.

Our model predicting Euler characteristics scores > 85% on

training data and 80% on test data, with both train and test

losses being < 0.5.

Figure 4. Loss and accuracy of Euler characteristic prediction over training.

Conclusions

Ourwork shows that relatively simple mathematical methods

can reliably approximate invariants previously known to only

be accessible via highly complex algorithms.

On one hand, this suggests that less complex algorithms may

exist, and further research in this direction might be fruitful.

On the other hand, our results serve as evidence to the

usefulness of ML-enabled workflows for mathematical re-

search: as we have proved that our features are learnable,

we plan to use more sophisticated workflows for generating

mathematically meaningful examples, e.g. using transformer

networks via PatternBoost [4].
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